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Abstract We extend a large-eddy simulation (LES) methodology, based on using the spectral vanishing
viscosity (SVV) method to stabilize spectral collocation approximations, from the Cartesian to the cylindrical
geometry. The capabilities of the SVV–LES approach are illustrated for two very different physical problems:
(1) the influence of thermal stratification on the wake of a cylinder, and (2) the instabilities that develop in
transitional and fully turbulent rotor–stator flows.
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1 Introduction

Thanks to the huge efforts made during the three last decades several routes are now defined to achieve large-
eddy simulations (LES) of complex flows. Thus one can discern the Smagorinsky subgrid-scale (SGS) model,
the spectral viscosity approach, the scale similarity model, the approximate deconvolution method, etc., all of
which in both their native or dynamic versions, and also the so-called monotonicity integrated LES (MILES)
approaches (see, e.g., [4,11,14,23,39] and references therein).

The spectral vanishing viscosity (SVV) method, first introduced to handle hyperbolic one-dimensional
(1D) problems with spectral methods [27,47], was introduced more recently in the LES field [19,20]. At the
same time we used this approach as a stabilization technique of an approximate deconvolution method (ADM)
[45,46] (see also [10,12]) of the SGS tensor [29], but with a different multidimensional extension of the initial
1D SVV method. The SVV method is of major interest in the field of spectral, spectral element, or hp-finite
element methods [21], because it allows one to stabilize the computations without losing the basic exponen-
tial convergence property of these spectral methods. Stabilization is achieved by completing the momentum,
and eventually combined transport–diffusion equations, with SVV terms. Some problems remain, concerning,
e.g., near-wall modeling (NWM) when the Reynolds number is so high that the boundary layers cannot be
resolved by the mesh [36]. Note that, despite the fact that using high-order methods for LES has the advantage
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of avoiding mixing between approximation errors and SGS modeling, work in this field remains rare, see,
e.g., [5,18]. Note also that the SVV method could be regarded as an SGS model, but that this link between a
stabilization technique and a physical modeling remains to be addressed.

In recent papers we have largely developed the SVV approach for LES, i.e., the SVV-LES approach [20].
Thus, comparisons between the SVV–LES and an ADM-stabilized SVV may be found in [30]; a sensitivity
study of SVV–LES results to the SVV control parameters is carried out in [31]; a formulation of the method
in weak form, for spectral element approximations, is proposed in [49]; and a unified strong–weak approach
with comparisons to experimental data is given in [32]; details of the computation of the dissipation rates may
be found in [33]. The computational results have essentially been obtained for the turbulent wake of a cylinder,
but additional results for rotor–stator flows have also been described [44].

Here we want to point out that the SVV–LES approach may apply to various physical problems, such
as stratified wakes and rotor–stator flows. Although such flows are very different, our spectral numerical
approaches are similar, except that for rotor–stator flows the SVV method is used in the cylindrical coordinate
system. This extension of our previous works, developed in Cartesian geometry, is addressed in Sect. 2, where
we describe an original formulation of the SVV method for the Navier–Stokes equations in cylindrical coor-
dinates. The capabilities of the SVV–LES modeling are illustrated in Sects. 3 and 4. In Sect. 3 the SVV–LES
method is used to show the influence of thermal stratification on the spatial development of wakes and in
Sect. 4 to compute rotor–stator flows both in transitional laminar–turbulent and fully turbulent regimes. We
conclude in Sect. 5.

2 SVV implementation and numerical method

Basically, the SVV method relies on the introduction of a discretization-dependent artificial diffusive term only
active in the highest frequency range of the numerical approximation. For 1D partial differential equations,
with N being the discretization parameter and uN (x) the numerical solution, such an additional term reads:

VN ≡ εN ∂x (QN (∂x uN )), (1)

where εN is an O(1/N ) coefficient and QN is the spectral viscosity operator such that, in the 1D nonperiodic
case [27] and with {Lk}k≥0 for the set of the Legendre polynomials,

∀φ, φ =
∞∑

k=0

φ̂k Lk, QN φ ≡
N∑

k=0

Q̂k φ̂k Lk

where Q̂k = 0 if k ≤ m N and 1 ≥ Q̂k > 0 if N ≥ k > m N , with e.g., m N = √
N and Q̂k = exp(−(k −

N )2/(k −m N )2). In the periodic case trigonometric polynomials are substituted for the Legendre polynomials.
In the framework of collocation Chebyshev methods we use a similar definition, but with Chebyshev instead of
Legendre polynomials. The main point is of course that a hierarchical basis must be used. Note that theoretical
papers use a step variation rather than the smoother exponential dependence of Q̂k , which is commonly used
in applications.

Extending the definition (1) to a multidimensional context is not as natural as it appears when looking at
the different forms proposed in the literature, see e.g., [7,17,19]. For us, we advocate the following definition:

VN ≡ ∇ · (εN QN (∇uN )) (2)

where

εN QN ≡ diag{εNi Qi
Ni

},

where Qi
Ni

is the 1D viscosity operator acting in direction i . Thus, we actually use a diagonal matrix form
of the operator εN QN , just as one introduces a nonscalar diffusivity when anisotropic media are considered.
Note that such a 3D extension is not trivial, thus:
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– Contrarily to some authors, see e.g., [21], we have not introduced a multidimensional spectral viscosity
operator. Our approach only makes use of the 1D operator in each spatial direction, so that if the SVV is
only required in one direction, say in the x-direction, no SVV is introduced in the y- and z-directions. This is
possible when using a multidimensional basis resulting from the tensorial product of 1D bases [see [49] for
(quadrangular) spectral elements]. This is however not possible when unstructured meshes are considered,
as in [21] for hp-finite elements.

– If a mapping f : �̂ → � from the reference domain �̂ to the physical domain � is involved, then we use:

εN QN (∇uN ) ≡ εN QN

(
∇̂(uN ◦ f )

)
G, (3)

where G is the Jacobian matrix of f −1 and ∇̂ denotes the gradient with respect to the variables of the ref-
erence domain. The polynomial approximation indeed holds in the reference domain, i.e., for the function
uN ◦ f . For a different approach, where the SVV contribution is governed by the gradient in the physical
domain rather than in the computational one, see e.g., [21].

In the framework of collocation methods the SVV stabilization can be simply implemented by combining
the diffusion and SVV terms to obtain

a�SVVuN ≡ a�uN + ∇ · εN QN (∇uN ) = a∇ · SN (∇uN ), (4)

where a is a dimensionless transport coefficient and where

SN = 1 + εN

a
QN .

It may be observed that the SVV and effective viscosities appear to be disconnected and some authors have
tried to preserve a link between them [20]. However, this is typical of most LES approaches, especially those
based on an SGS viscosity, e.g., the celebrated Smagorinsky model. When looking at the dissipation rate of
the turbulent kinetic energy, it is certainly desirable to maintain a nonnegligible value of the viscous part with
respect to the SGS (here the SVV) part, by refinement, if necessary, of the computational grid [13,33]. The
determination of the correct values for the SVV parameters, εN and m N , is discussed in [31]. In this paper we
suggest, on the basis of numerical experiments, to simply minimize the magnitude of the SVV stabilization
term.

Now, with ∂i ≡ ∂xi , if we denote

∂̃i ≡ Si
Ni

∂i , Si
Ni

= 1 + εNi

a
Qi

Ni

we simply have

�SVV =
∑

i

∂i ∂̃i . (5)

In a multidimensional context such a formulation of the SVV Laplacian operator is strongly linked to our def-
inition of the operator εN QN . It enables an efficient implementation of the SVV method: differences between
a direct numerical simulation (DNS) and a LES only occur in the preliminary part of the computation, when
the SVV modified operators are setup.

Our goal now is to establish a similar formulation for the cylindrical coordinate system used for rotor–stator
flows. In the cylindrical system (r, θ, z), we also use the definition (2) of the SVV term to obtain:

�SVV = ∂r ∂̃r + 1

r
∂̃r + 1

r2 ∂θ ∂̃θ + ∂z ∂̃z . (6)

The natural periodicity of the azimuthal direction motivates the use of Fourier expansions. For the k-Fourier
mode and with Ŝθ

k for the corresponding coefficient of the θ -SVV operator, this yields the SVV Laplacian
operator:

�SVV,k = ∂r ∂̃r + 1

r
∂̃r − Ŝθ

k

r2 k2 + ∂z ∂̃z . (7)
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For the Navier–Stokes equations one must implement the vector Laplacian operator. This is a trivial task in
the Cartesian system, because the vector Laplacian splits into scalar Laplacian applied to each vector compo-
nent. A difficulty with the cylindrical coordinate system comes from the fact that the vector Laplacian is not
diagonal. An efficient way to recover a diagonal operator is the transformation [35]:

v+ = vr + ivθ , v− = vr − ivθ (i2 = −1), (8)

where v is any vector function. Then, in the (e+, e−, ez) basis the vector Laplacian operator reads:

∇2 = diag

{
� − 1

r2 + 2i

r2 ∂θ , � − 1

r2 − 2i

r2 ∂θ , �

}
, (9)

where we have used ∇2 and � to represent the vector and scalar Laplacian, respectively. For the k-Fourier
mode one obtains:

∇2
k =

(
∂rr + 1

r
∂r + ∂zz

)
I − 1

r2 diag
{
(k + 1)2, (k − 1)2, k2} , (10)

where I is the identity matrix.
The expression for the corresponding SVV vector Laplacian operator follows:

∇2
SVV,k =

(
∂r ∂̃r + 1

r
∂̃r + ∂z ∂̃z

)
I − Ŝθ

k

r2 diag
{
(k + 1)2, (k − 1)2, k2} . (11)

Another difficulty of the cylindrical system comes from the singularity of the Laplacian operator at the axis
(see e.g., [2,3,28,43]). We do not address the problem here, since for the rotor–stator flows considered in this
paper the flow is in fact computed in a ring.

Let us conclude this Section by mentioning the main features of the two codes that have been developed
using this SVV–LES methodology. More details may be found in [8,30,32,34] for the Cartesian code and in
[38,43] for the cylindrical code.

• The time scheme is second-order accurate: second-order backward differences are used for the approxima-
tion of the time derivative of the velocity (and eventually of the temperature).

• The SVV modified diffusion terms are treated implicitly.
• The convective terms are treated explicitly. A second-order Adams–Bashforth extrapolation is used in the

cylindrical code whereas an operator integration factor semi-Lagrangian method is used in the Cartesian
code.

• Projection methods are used to obtain a divergence-free velocity field. This relies on the so-called unique
grid PN − PN−2 approximation in the Cartesian code whereas one uses a preliminary solve for the pressure
in the cylindrical code.

• Fourier–Galerkin approximations are used in the homogeneous direction, i.e., in the spanwise and azimuthal
directions for the Cartesian and cylindrical codes, respectively. Chebyshev collocation approximations are
used in the nonhomogeneous directions.

• Specific to the Cartesian code: (1) a domain decomposition technique is used in the streamwise direction,
and (2) the bluff body is modeled by using a pseudopenalization technique.

3 Stratified wakes of a cylinder

Stratified fluids are essentially characterized by the Brunt Väisälä angular frequency Ñ , such that Ñ 2 =
−g∂yρ/ρ, where y denotes the vertical axis, ρ the fluid density, and g the acceleration due to gravity. In the
case of thermal stratification, if the variations of ρ(y) are weak, then using α to denote the thermal expansion
coefficient, Ñ 2 ≈ gα∂y T0, where T0 is the temperature profile at rest. Hereafter we suppose that the stratifi-
cation is linear (∂y T0 = cte > 0). In dimensionless form, from the Brunt Väisälä angular frequency arises the
internal Froude number or, equivalently, the Richardson number. Using D, U , and δT = D∂y T0 to represent the
characteristic length, velocity, and temperature gap, respectively, one has F = U/(Ñ D) and Ri = 1/F2. The
modeling is based on the incompressible Navier–Stokes equations coupled with a transport–diffusion equation
for the temperature within the Boussinesq approximation, i.e., the density variations are only considered in
the buoyancy term that appears in the momentum equation. The Boussinesq equations can be written:
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Fig. 1 Temperature field at z = 0: Ri = 0 (top), Ri = 18 × 10−5 (middle), and Ri = 0.25 (bottom)

Dt u = −∇ p + RiT ey + 1

Re
∇2u (12)

∇ · u = 0 (13)

Dt T = 1

Pe
�T (14)

with the usual notations, t : time, Dt : material derivative, p: pressure term, ey : vertical unit vector, u: velocity,
T : temperature, Re: Reynolds number, and Pe: Péclet number.

SVV stabilizing terms are introduced both in the momentum and energy equations. As explained earlier,
this is done by substituting SVV Laplacian for the Laplacian operators. Thus, we set a = Re−1 for the
momentum equation and a = Pe−1 for the temperature equation in (5).

SVV–LES results obtained for the wake of a cylinder in thermally stratified water are presented. The param-
eters D and U here are the cylinder diameter and the fluid velocity far upstream of the cylinder, respectively.
The cylinder is embedded in a channel-like geometry and the spanwise direction is assumed homogeneous.
The inlet velocity is U , free-slip boundary conditions are assumed at the horizontal boundaries and an advec-
tion condition at the velocity U is enforced at the outlet. For the temperature a constant profile is enforced at
the inlet, adiabaticity is assumed at the horizontal boundaries, and an advection condition is also used at the
outlet. Three cases are investigated, corresponding to Richardson numbers of Ri = 0, Ri = 18 × 10−5, and
Ri = 0.25. In the former case the temperature behaves like a passive scalar whereas for Ri �= 0 there is a
thermal-hydrodynamic coupling. In all cases the Reynolds and Prandtl numbers are Re = 3900 and Pr = 7,
so that Pe = Pr Re = 27300. Note that for Ri = 0 comparisons with experiments are given and discussed
in [32]. The computational domain is � = (−6.5, 17.5) × (−4, 4) × (−2, 2), and the cylinder is centered at
x = y = 0. The discretization parameters are the following: five subdomains with 61 × 121 × 60 grid points
in each of them, and a time step of �t = 5 × 10−3. The SVV parameters are m N = N/2 and εN = 1/N , with
N = (60, 120, 30).
Instantaneous fields: The instantaneous temperature fields, see Fig. 1, clearly show the turbulent features of
the flow. Essentially one observes that such fields are similar for Ri = 0 and Ri = 18 × 10−5, whereas for
Ri = 0.25 one observes the expected confinement effect due to the stratification, see e.g., [6].
Mean flow: Figure 2 shows the mean profiles of the streamwise component of the velocity. These profiles are
averaged in time and also in the z-spanwise direction. On the left one has < ux > (y) for x ≈ 7, whereas on
the right one has < ux > (x) for y = 0. Again one observes the influence of the stratification for Ri = 0.25,
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whereas the results obtained for Ri = 18 × 10−5 and Ri = 0 are very similar. We also observe the influence
of the stratification on the recirculation length, which is shorter for Ri = 0.25.
Temperature and crossflow velocity variances: The influence of the stratification is especially obvious when
looking at the variations in streamwise direction of the temperature and crossflow velocity variances, see
Fig. 3. The blocking effect due to the stratification is especially evident in the temperature results, since the
temperature variance shows a maximum for x ≈ 6 if Ri = 0.25, whereas this maximum is not reached at
the outlet of the computational domain for Ri = 0 and Ri = 18 × 10−5. For the Reynolds shear stress, one
observes a shift of the maximum towards the near wake and a quicker decrease beyond this maximum for the
stronger stratification.
Drag and lift coefficients: The pseudopenalization technique used to model the bluff body allows an efficient
computation of the drag and lift coefficients, by numerical integration of the penalty term (implicitly) intro-
duced to cancel the velocity inside the obstacle. However, although satisfactory results have been obtained for
the DNS of the 2D wake of a cylinder at Reynolds number Re = 200 [34], here these coefficients are found
to be overestimated (nonstratified case), probably due to a lack of resolution in the near-wall region. Work is
presently being carried out to clarify this point.

4 Rotor–stator flow

We now investigate a rotor–stator flow within a cavity made of two discs enclosing an annular domain of
radial extent �R = R1 − R0, where R0 and R1 are the internal and external radii, respectively. Two stationary
cylinders of height H , termed the shaft and the shroud, bound the domain, see Fig. 4. Two parameters define
the shape of the system: These may be taken as the curvature parameter Rm = (R0 + R1)/�R and the aspect
ratio L = �R/H . Here, Rm = L = 5. The reference time and velocity are �−1 and �R1, respectively, and
the Reynolds number is defined as Re = �R2

1/ν, where ν is the kinematic viscosity.
The normalized dimensionless coordinates in any meridian plane are (r = rdim/�R − Rm , z = 2zdim/

H − 1) ∈ [−1, 1]2 (rdim and zdim are the corresponding dimensioned variables). No-slip boundary conditions
are applied to all walls: ur = uθ = uz = 0, except on the rotating disk (z = 1), where uθ = (Rm +r)/(Rm +1).
The junction of the stationary cylinders with the rotor is regularized by employing a boundary layer function,
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Fig. 4 Schematic of the rotor–stator cavity

uθ = exp(−(z −1)/µ), where the value of the shape parameter µ = 6×10−3 provides a reasonable represen-
tation of experimental conditions (there is a thin gap between the edge of the rotating disc and the stationary
sidewall), while retaining spectral accuracy.

Rotor–stator flows are very challenging for numerical modeling, particularly in turbulent regimes, see e.g.,
[24–26,48]. A characteristic feature of such flows is indeed the coexistence of adjacent coupled flow regions
involving laminar, transitional, and turbulent regions which are completely different in terms of their flow
characteristics. Moreover, the turbulence is strongly inhomogeneous and anisotropic because of confinement,
flow curvature, and rotational effects. At present, computer performance only permits DNS of transitional
laminar–turbulent cavity flows (Re ≈ 105) [41]. Due to the coexistence of diverse flow regimes, attempts
to compute turbulent rotor–stator flows by using statistical approaches, i.e., based on the Reynolds-averaged
Navier–Stokes equations, are rather disappointing. Second-order closures could be more appropriate [22,37],
but even if they provide a correct localization of the laminar and turbulent regions, the Reynolds stresses are not
fully satisfactory, particularly near the rotating disc. Consequently, the LES approach is a valuable approach
to the computation of such flows. As far as we are aware, efficient LES of fully turbulent flows in an enclosed
rotor–stator cavity have not yet been performed. However, one should mention the work of Andersson and
Lygren [1] who performed wide- and narrow-gap simulations for Re ≤ 1.6×106, but using a simplified model
in which the flow is restricted to an angular section of the cavity and is homogeneous in the radial direction.

Firstly, a SVV–LES simulation is presented for a transitional flow regime at moderate Reynolds number
(Re = 7×104) and comparisons with a reference DNS solution are provided. Further, a much higher Reynolds
number flow, Re = 106, is computed to show the capability of the SVV technique to investigate the turbulence
features of such flows.

4.1 Transitional rotor–stator flow

At Re = 104 the rotor–stator flow is steady, axisymmetric, and consists of two distinct boundary layers (at the
discs) and of a central core flow in near solid body rotation. Using this flow as an initial condition, the Reynolds
number was increased step by step up to Re = 7 × 104. According to previous numerical and experimental
works [40,41] the flow is then transitional laminar–turbulent, with a fully turbulent stator layer while the rotor
layer remains laminar.

DNS computations were performed on a thin grid of 101 × 200 × 65 points in the (r, θ, z) directions,
respectively, in order to ensure aliasing-free spectra in all directions. The time step was �t = 5 × 10−4. For
the SVV–LES calculations, the grid was 33 × 64 × 23 (which only represents 3.70% of the DNS resolution),
with a time step of �t = 4 × 10−3. The SVV parameters were chosen as εN = 2/N and m N = N/2 in each
direction, where N = (32, 32, 22).

We define the wall unit value z+ = hz Vτ /ν, where hz is the size of the smallest computational cell in the
axial direction and Vτ is the total friction velocity at the discs. The universal value of the viscous sublayer
thickness being close to five wall units, z+ needs to be close to 1 to ensure an accurate description of the sub-
layer. Thanks to the accumulation of the Gauss–Lobatto grid points at the end points, for the DNS it turns out
that the z+ values are smaller than 0.2 along the discs. For the SVV–LES, we obtain larger but still reasonable
values of z+, since they remain essentially smaller than 1.4, see Fig. 5.

The flow perturbations are measured primarily by the magnitude of the axial component of velocity, which
varies around a zero mean. The DNS and SVV–LES solutions show spatial structures in the stator boundary
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Fig. 5 Radial variation of the wall-normal value z+ at the rotor (left) and at the stator (right) for Re = 7 × 104. Bold line DNS
with grid 101 × 200 × 65. Circles SVV–LES with grid 33 × 64 × 23

Fig. 6 Isolines of the velocity axial fluctuations in the stator boundary layer, Re = 7 × 104. DNS result with a 101 × 200 × 65
mesh (left) and SVV–LES result with a 33 × 65 × 23 mesh (right)

layer corresponding to traveling vortices, which expand in rings and then in spirals in the azimuthal direction,
depending on the radius, see Fig. 6. From the DNS results, one can observe four pairs of rolls in the radial
direction, with a radial wavelength 12 ≤ λr/δB ≤ 18, where λr = �R/n, with n being the number of rolls
and δB = (ν/� f )

0.5 a characteristic length of the boundary layer, and where � f denotes the angular velocity
of the geostrophic core region. These rolls expand in the azimuthal direction in the spiral arms, rotating in
the direction of the mean flow driven by the rotor. The vortices are advected by the mean flow to the inner
radius and the spiral arms are broken, showing dislocation phenomena. The positive angle ε of the spiral
wavefront with the geostrophic flow slightly decreases when the radius increases over the range [5◦; 22◦], and
the spiral arms turn into nearly annular flow next to the shaft. The corresponding wavelengths vary over the
range 15 ≤ λ/δB ≤ 28.5, with λ = 2πr sin ε/n. Note that the value of the azimuthal wavenumber at large
radius is almost a third times smaller in the SVV–LES solution (23 spiral arms) than in the DNS solution
(37 spiral arms). This results from the small number of azimuthal modes used for the SVV–LES (maximum
wavenumber 32) to correctly capture the physics of the flow in this direction, since the azimuthal wavelength
of the spiral pattern is smaller than the LES azimuthal grid step.

These spiral patterns have already been observed in experiments by Schouveiler et al. [40] at Re = 2×104,
R1/H = 8.75: the spirals patterns (noted RS1) evolve close to the shroud with an angle of about ε = 25◦,
in good agreement with the structures obtained in the present computations. The main characteristics of these
structures are in good agreement with those obtained by linear stability analysis for the type I instability [42].

The instantaneous data have been averaged both in time and in the homogeneous azimuthal direction. The
mean flow has the same structure found in the laminar regime, with two separated boundary layers. On average,
there exists a main flow in the azimuthal direction coupled with a secondary flow in the meridian plane. The
core in solid body rotation can be characterized by K = uθ /�rdim, which measures somehow the ratio between
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Fig. 7 Axial profiles of the radial (left) and tangential (right) components of the mean velocity at mid-radius, Re = 7 × 104.
Bold line DNS with grid 101 × 200 × 65. Circles SVV–LES with grid 33 × 64 × 23. Results are normalized by the local velocity
of the rotor �rdim

Fig. 8 Axial profiles of the radial (left) and tangential (right) normal Reynolds stresses in the stator boundary layer at the mid
radius, Re = 7×104. Results are normalized by the wall friction velocity, Vτ , on the stator. Bold line DNS with grid 101×200×65.
Circles SVV–LES with grid 33 × 64 × 23

the convective terms and the Coriolis force. The differences in the thickness and shape of the radial velocity
profiles near the two discs suggests that the stator layer is turbulent while the rotor layer remains laminar. This
is the primary reason that in both solutions (DNS and SVV–LES) the core circumferential velocity is only
about one third of that of the rotor at the same radius. DNS results provide K = 0.3847 at the mid radius while
the SVV–LES gives K = 0.3961.

The radial mean velocity is very well predicted by the SVV–LES solution, see Fig. 7. In particular, both
the Bödewadt (at the stator) and Ekman (at the rotor) boundary layers are very well captured. The Reynolds
stresses confirm the presence of a turbulent stator layer and a laminar rotor layer (see Fig. 8) where the square
roots of the radial and azimuthal normal Reynolds stresses, normalized by the wall friction velocity Vτ at the
stator, are shown versus zdim/δB . The agreement between the DNS and SVV–LES solutions appears good for
the tangential normal stress, but is less satisfactory for the radial one, with a much steeper behavior of the axial
profile for the SVV–LES result.

Remark There is a very strong anisotropy of the normal stresses, typical of low-Reynolds-number wall flows.
As would be inferred from a stress budget, the normal stress is the greatest in the azimuthal direction, exceed-
ing by a factor of at least 7 in DNS those in the two other directions. The maximum of the square root of
the normal Reynolds stresses at the mid radius in the radial and azimuthal directions, 1.25 and 3.34, respec-
tively, are much larger than the ones given by the experimental results of Itoh [15] by a factor of about
1.5: Itoh found maxima equal to 1.4 and 2.1, respectively, at Re = 6.4 × 105. Nevertheless, the values
obtained here are in good agreement with the axisymmetric DNS results (1.5 and 3.6 at Re = 105) obtained
by Jacques and Le Quéré [16]. The difference from the experimental data can be explained by the differ-
ence between the Reynolds numbers in the present computations (Re = 7 × 104) and in Itoh’s experiment
(Re = 6.4 × 105). It is well known that an increase in the rotation rate leads to a broader range of turbu-
lent scales and to a progressive reduction in turbulence intensities with a lower level of anisotropy between
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Fig. 9 Isolines of the instantaneous fields of Q-criterion for θ = π/4 (top) and θ -averaged turbulent kinetic energy (bottom),
Re = 106

components [26]. The same features have long been known in plane channel flow too. As expected, an exami-
nation of the off-diagonal Reynolds stresses shows that the normal stresses are dominant in the vicinity of the
stator layer.

4.2 Turbulent rotor–stator flow

The efficiency of our SVV–LES approach has been evaluated at the much higher Reynolds number of Re = 106.
The computational grid was kept relatively coarse for this Reynolds number with 81 × 160 × 81 points in the
(r, θ, z) directions, respectively, and a time step of �t = 10−4. As a comparison, this grid is twice as coarse as
that used by Andersson and Lygren [1] in their LES (case D study of a wide-gap cavity). However, it permits
one to solve the boundary layers correctly: values of z+ around 0.65 and less than 0.6 are found for the Ekman
and Bödewadt layers, respectively. Concerning the SVV parameters, as for Re = 7 × 104, we use εN = 2/N
and m N = N/2 in all directions, with N = (80, 80, 80) here.

At this Reynolds number, both layers are turbulent, as shown by the isolines of the mean turbulent kinetic
energy in Fig. 9. The figure provides qualitative evidence that the turbulence is mainly concentrated near the
two discs. The maximum of the turbulent kinetic energy is located at the rotor–shroud junction where the flow,
accelerated by the rotor, impinges on the stationary outer cylinder.

The flow consists of rather tangled co-rotating vortices which originate near the shroud and move radially
inward on the stator and outward on the rotor, following the main flow direction. The growth of these vortices
strongly affects not only the structure of the two disc boundary layers but also the geostrophic core. This is
revealed by plotting the isolines of the Q-criterion in the meridian plane (see Fig. 9). In the vicinity of the
inner and outer cylinders there is now strong mixing between both boundary layers, involving a large number
of vortices of different scales. This underlines the important effects that the inner and outer cylinders have on
the characteristics of the turbulence.

The axial profiles at the mid radius of the mean radial and tangential component of the velocity show
sharper profiles and a larger core region than at Re = 7 × 104 (see Fig. 10). The core rotates at K = 0.3919 at
the mid radius, which corresponds to a local Reynolds number of Reloc = �r2

dim/ν = 694444. This value of K
is in close agreement both with the numerical work of Andersson and Lygren [1] (K = 0.40 at Reloc = 640000
in their case D) and the experimental results of Itoh et al. [15] (K = 0.41). The small underestimation of K is
mainly due to differences in the problem modeling (a cylindrical cavity for Itoh et al. [15], an homogeneous
cavity in radial direction for Andersson and Lygren [1], and a shrouded rotor–stator annular cavity for the
SVV–LES). Indeed, the stationary inner cylinder greatly stabilizes the flow and the shroud tends to slow the
flow by dissipating a lot of energy in the impinging jet and in the Stewardson layer that follows the Ekman
layer in the upper part of the shroud.

As no reference profile is available at this Reynolds number, we compared two local parameters introduced
by Daily and Nece [9] based on the wall friction velocity: the skin friction drag coefficient Cθ = 2(Vτ /rdim�)2

derived from the torque exerted by the fluid on the two discs and the local stress Reynolds number Reτ =
rdimVτ /ν.

The SVV–LES calculations give values at the mid radius of the skin friction drag of Cθ = 1.6 × 10−3 in
the Ekman layer and Cθ = 8.74 × 10−4 in the Bödewadt layer. These values are slightly smaller than those
found by Andersson and Lygren [1], where Cθ = 2.05 × 10−3 and Cθ = 1.15 × 10−3, respectively. The
relative dissipation rate between the two layers due to the skin friction, Cθ (rotor)/Cθ (stator), is 1.83 for the
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Fig. 10 Axial profiles at the mid radius of the mean radial velocity (top left), mean tangential velocity (top right), the square root
of the radial (bottom left) and azimuthal (bottom right) normal Reynolds Stresses in the Ekman (solid line) and Bödewadt (dashed
line) layers, Re = 106. Mean velocities are normalized by the local velocity of the rotor. The square roots of the Reynolds stresses
are normalized by the local friction velocity, Vτ , on the corresponding disc

SVV–LES. This value is in close agreement with the value of 1.79 of Andersson and Lygren [1] for their case D
and with the value 2 measured experimentally by Itoh et al. [15].

The local stress Reynolds numbers at the mid radius are found to be Reτ = 525 at the rotor and Reτ = 288
at the stator. These values, which show that the level of turbulence at the mid radius is larger in the Ekman
than in the Bödewadt layer, are very close to those obtained by Andersson and Lygren [1]: Reτ = 525 and
Reτ = 284, respectively.

5 Conclusion

Using high-order methods for the LES of complex flows is certainly of interest, especially to avoid a mixing of
the approximation errors and the SGS modeling. In this spirit, the spectral vanishing viscosity (SVV) method
appears to be a good candidate since it allows one to stabilize the computations while preserving the so-called
spectral accuracy. Moreover, the recurrent problem of the commutation error between the filtering and differ-
entiation operators is bypassed, even if of course it is indeed filtered values that are computed. In this paper
we have extended a methodology developed in Cartesian geometry to the case of cylindrical coordinates, for
spectral collocation solvers. Examples of applications to physical problems as different as stratified wake flows
and rotor–stator flows have been provided. We have especially focused on rotor–stator flows in the transitional
laminar–turbulent and fully turbulent regimes, with comparisons to DNS data or to other experimental and
numerical investigations. For such closed rotor–stator cavity flows the present SVV–LES approach has yielded
promising results.
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